Comparing the Riskiness of Dependent Portfolios

Ranadeera Samanthi*

University of Wisconsin-Milwaukee

The 49th Actuarial Research Conference UC Santa Barbara, July 13-16, 2014

* In collaboration with V. Brazauskas (UWM), Wei Wei (UWM)

(ロ) (四) (E) (E) (E) (E)

Outline

- Motivation
- Preliminaries

2 Hypothesis Test and Simulation Study

- Nested L-Statistic
- Asymptotic Results
- Simulation Study

3 Conclusion

Motivation

• Data: The damage from 137 major tornadoes in the U.S. from 1890 to 1999: (see Brazauskas, Jones, Puri and Zitikis (2007))

Motivation

• Data: The damage from 137 major tornadoes in the U.S. from 1890 to 1999: (see Brazauskas, Jones, Puri and Zitikis (2007))

Motivation

• Motivation: If the risks are independent Brazauskas, Jones, Puri and Zitikis have introduced a hypothesis test to check if at least one of those is different from the others or not.

Questions:

- 1. How does this test behave in the presence of dependence?
- 2. Does this test perform in the same manner in the presence of different dependent structures?

• Dependent portfolios:

Negative Dependence:

$$\Sigma = \left(\begin{array}{rrrr} 1 & -0.5 & -0.5 \\ -0.5 & 1 & -0.5 \\ -0.5 & -0.5 & 1 \end{array}\right)$$

• Dependent portfolios:

Negative Dependence:

$$\Sigma = \left(\begin{array}{rrr} 1 & -0.5 & -0.5 \\ -0.5 & 1 & -0.5 \\ -0.5 & -0.5 & 1 \end{array}\right)$$

Independence:

$$\Sigma = \left(\begin{array}{rrr} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array} \right)$$

• Dependent portfolios:

Negative Dependence:

Moderate Positive Dependence:

$$\Sigma = \begin{pmatrix} 1 & -0.5 & -0.5 \\ -0.5 & 1 & -0.5 \\ -0.5 & -0.5 & 1 \end{pmatrix} \qquad \Sigma = \begin{pmatrix} 1 & 0.5 & 0.5 \\ 0.5 & 1 & 0.5 \\ 0.5 & 0.5 & 1 \end{pmatrix}$$

Independence:

$$\Sigma = \left(\begin{array}{rrr} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array} \right)$$

• Dependent portfolios:

Negative Dependence:

$$\Sigma = \left(\begin{array}{rrrr} 1 & -0.5 & -0.5 \\ -0.5 & 1 & -0.5 \\ -0.5 & -0.5 & 1 \end{array}\right)$$

Independence:

$$\Sigma = \left(\begin{array}{rrr} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array} \right)$$

Moderate Positive Dependence:

$$\Sigma = \left(\begin{array}{rrrr} 1 & 0.5 & 0.5 \\ 0.5 & 1 & 0.5 \\ 0.5 & 0.5 & 1 \end{array}\right)$$

Strong Positive Dependence:

$$\Sigma = \left(\begin{array}{rrr} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{array} \right)$$

• Spectral risk measure:

$$R[F] = \int_0^1 F^{-1}(u) J(u) \ \mathrm{d} u$$

where J is such that the integral is finite for the set of cdf's F under consideration (Jones & Zitikis, 2003). J is called a *risk aversion function*.

• Spectral risk measure:

$$R[F]=\int_0^1 F^{-1}(u)J(u) \ \mathrm{d} u$$

where J is such that the integral is finite for the set of cdf's F under consideration (Jones & Zitikis, 2003). J is called a *risk aversion function*.

- Examples:
 - MEAN:

$$J(u) = 1 \quad \text{for} \quad 0 \le u \le 1$$

- Proportional Hazards Transform (PHT)

$$J(u) = r(1-u)^{r-1} \quad \text{for} \quad 0 \le u \le 1$$

where $r \ (0 < r \le 1)$ is called the *distortion level*.

< ∃ →

- Proportional Hazards Transform (PHT)

$$J(u) = r(1-u)^{r-1} \quad \text{for} \quad 0 \le u \le 1$$

where $r \ (0 < r \le 1)$ is called the *distortion level*.

- Conditional Tail Expectation (CTE)

$$J(u) = \begin{cases} 0, & \text{for } 0 \le u < t, \\ 1/(1-t), & \text{for } t \le u \le 1. \end{cases}$$

where t ($0 \le t < 1$) is called the *threshold level*. Alternative names for the CTE are: *Tail Conditional Expectation*; *Conditional Value-at-Risk*; *Expected Shortfall*.

• Nonparametric estimation of risk measures:

$$\widehat{R[F]} = R[\widehat{F}] = \int_0^1 \widehat{F}^{-1}(u)J(u) \, \mathrm{d}u$$
$$= \sum_{m=1}^n \left(\int_{(m-1)/n}^{m/n} J(u) \, \mathrm{d}u \right) X_{m:n}$$
$$= \sum_{m=1}^n c_{nm} X_{m:n}$$

where \widehat{F} is the empirical cdf based on the sample X_1, \ldots, X_n with $X_{1:n} \leq \cdots \leq X_{n:n}$ denoting its order statistics. Note: $\widehat{R[F]}$ is an *L*-statistic (i.e., a linear combination of order statistics).

• Hypothesis test:

Let $R_1 = R[F_1], \ldots, R_k = R[F_k]$ be risk measure values corresponding to k populations with cdf's F_1, \ldots, F_k which can be *dependent* or *independent*. The hypothesis of interest:

• Hypothesis test:

Let $R_1 = R[F_1], \ldots, R_k = R[F_k]$ be risk measure values corresponding to k populations with cdf's F_1, \ldots, F_k which can be *dependent* or *independent*. The hypothesis of interest:

• The reformulation of the test using Gini index

$$H_0: \gamma = 0$$
 Vs. $H_1: \gamma > 0$

where $\gamma := k^{-2} \sum_{1 \le i,j \le k} |R_i - R_j|$ is the Gini index (Gini, 1914) of the risk measure values R_1, \ldots, R_k .

Nested L-Statistic

• The Gini index γ as a Nested-L statistic:

$$\begin{split} \gamma &= \frac{1}{k^2} \sum_{1 \le i,j \le k} |R_i - R_j| = \frac{1}{k^2} \sum_{i=1}^k \left(4i - 2(k+1) \right) R_{i:k} \\ &= \sum_{i=1}^k \left(\int_{(i-1)/k}^{i/k} K(u) du \right) R_{i:k} = \sum_{i=1}^k c_{ki}^* R_{i:k} \end{split}$$

where K(u) := 4u - 2 and $R_{1:k} \leq \cdots \leq R_{k:k}$ are the k ordered risk measure values.

Nested L-Statistic

• A nonparametric estimator of γ :

$$\widehat{\gamma} = \frac{1}{k^2} \sum_{1 \le i, j \le k} \left| \widehat{R}_i - \widehat{R}_j \right|$$
$$= \frac{1}{k^2} \sum_{i=1}^k (4i - 2(k+1)) \widehat{R}_{i:k}$$
$$= \sum_{i=1}^k c_{ki}^* \widehat{R}_{i:k}$$

where $\widehat{R}_i = \sum_{m=1}^n c_{nm} X_{m:n}(i)$ and $\widehat{R}_{1:k} \leq \cdots \leq \widehat{R}_{k:k}$ denote the k ordered *estimators* of the corresponding risk measure values.

• The test statistic:

$$T:=\sqrt{\frac{n}{k}}\widehat{\gamma}$$

• The test statistic:

$$T := \sqrt{\frac{n}{k}} \widehat{\gamma}$$

Then under H_0 ,

$$T = \frac{1}{k^2} \sum_{i=1}^{k} \left(4i - 2(k+1) \right) \Delta_{i:k}$$
 (1)

where
$$\Delta_i = \sqrt{rac{n}{k}}\left(\widehat{R_i} - R_i
ight)$$
 and $\Delta_{1:k} \leq \cdots \leq \Delta_{k:k}.$

• Under H_0 :

As $n \to \infty,$ the asymptotic distribution of T is

$$\frac{1}{k^2} \sum_{i=1}^k (4i - 2(k+1)) \, G_{i:k}$$

where, $G_{1:k}, \ldots, G_{k:k}$ are k order statistics of normal random variables with the same mean (= 0) but with different (and "messy") variances. Their dependence depend on that of underlying risks.

• Under H_0 :

As $n \to \infty,$ the asymptotic distribution of T is

$$\frac{1}{k^2} \sum_{i=1}^k (4i - 2(k+1)) \, G_{i:k}$$

where, $G_{1:k}, \ldots, G_{k:k}$ are k order statistics of normal random variables with the same mean (= 0) but with different (and "messy") variances. Their dependence depend on that of underlying risks.

• Under H_1 :

As $n \to \infty$, the test statistic $T \to \infty$, implying that the asymptotic power of the test is 1.

- Bootstrap:
 - For every $1 \le i \le k$, resample (with replacement) $X_1(i), \ldots, X_n(i)$ and obtain $X_1^*(i), \ldots, X_n^*(i)$; then compute

$$\widehat{\gamma}^* := \frac{1}{k^2} \sum_{i=1}^k (4i - 2(k+1)) D^*_{i:k}$$

where $D_{1:k}^* \leq \ldots \leq D_{k:k}^*$ are the ordered values of $D_i^* := \widehat{R}_i^* - \widehat{R}_i.$

A B > A B >

- Bootstrap:
 - For every $1 \le i \le k$, resample (with replacement) $X_1(i), \ldots, X_n(i)$ and obtain $X_1^*(i), \ldots, X_n^*(i)$; then compute

$$\widehat{\gamma}^* := \frac{1}{k^2} \sum_{i=1}^k (4i - 2(k+1)) D_{i:k}^*$$

where $D_{1:k}^* \leq \ldots \leq D_{k:k}^*$ are the ordered values of $D_i^* := \widehat{R}_i^* - \widehat{R}_i$.

- Repeat the previous step B (say, B = 1000) number of times and obtain $\hat{\gamma}_1^*, \ldots, \hat{\gamma}_B^*$; then order them and obtain $\hat{\gamma}_{1:B}^* \leq \cdots \leq \hat{\gamma}_{B:B}^*$.

同 ト イ ヨ ト イ ヨ ト

- Bootstrap:
 - For every $1 \le i \le k$, resample (with replacement) $X_1(i), \ldots, X_n(i)$ and obtain $X_1^*(i), \ldots, X_n^*(i)$; then compute

$$\widehat{\gamma}^* := \frac{1}{k^2} \sum_{i=1}^k (4i - 2(k+1)) D_{i:k}^*$$

where $D_{1:k}^* \leq \ldots \leq D_{k:k}^*$ are the ordered values of $D_i^* := \widehat{R}_i^* - \widehat{R}_i$.

- Repeat the previous step B (say, B = 1000) number of times and obtain $\hat{\gamma}_1^*, \ldots, \hat{\gamma}_B^*$; then order them and obtain $\hat{\gamma}_{1:B}^* \leq \cdots \leq \hat{\gamma}_{B:B}^*$.
- DECISION: Reject H_0 at the α level, if $\widehat{\gamma} > \widehat{\gamma}^*_{[B(1-\alpha)]:B}$

伺 ト く ヨ ト く ヨ ト

Objectives:

- To estimate the power of the test against selected types of alternatives for various dependence structures

Objectives:

- To estimate the power of the test against selected types of alternatives for various dependence structures
- Portfolios of losses (*F*'s):
 - F_1 : Exponential, F_2 : Pareto, F_3 : Lognormal.

Objectives:

- To estimate the power of the test against selected types of alternatives for various dependence structures
- Portfolios of losses (*F*'s):
 - F_1 : Exponential, F_2 : Pareto, F_3 : Lognormal.
- Dependence structures:

Negative, Independence, Moderate Positive, Strong Positive

Objectives:

- To estimate the power of the test against selected types of alternatives for various dependence structures
- Portfolios of losses (*F*'s):
 - F_1 : Exponential, F_2 : Pareto, F_3 : Lognormal.
- Dependence structures:

Negative, Independence, Moderate Positive, Strong Positive

• Risk measures (*R*'s):

Mean, PHT [r = 0.85], CTE [t = 0.75]

• Under H_0 (equally risky portfolios)

 $R[F_1] = R[F_2] = R[F_3]$

• Under H_0 (equally risky portfolios)

 $R[F_1] = R[F_2] = R[F_3]$

• Under H_1 (unequally risky portfolios)

For a fixed R, we consider two types of alternatives:

1- Two portfolios are equally risky but the third one differs:

$$R[F_1^{\star}] = c_{\star}R[F_1], \quad R[F_2^{\star}] = R[F_2], \quad R[F_3^{\star}] = R[F_3],$$

where $R[F_1] = R[F_2] = R[F_3]$ and $c_{\star} \neq 1$.

• Under H_0 (equally risky portfolios)

$$R[F_1] = R[F_2] = R[F_3]$$

• Under H_1 (unequally risky portfolios)

For a fixed R, we consider two types of alternatives:

1- Two portfolios are equally risky but the third one differs:

$$R[F_1^{\star}] = c_{\star}R[F_1], \quad R[F_2^{\star}] = R[F_2], \quad R[F_3^{\star}] = R[F_3],$$

where $R[F_1] = R[F_2] = R[F_3]$ and $c_{\star} \neq 1$.

2- Relative riskiness of all three portfolios is equally-spaced:

 $R[F_1^{\star\star}] = c_{\star\star}R[F_1], \ R[F_2^{\star\star}] = R[F_2], \ R[F_3^{\star\star}] = c_{\star\star}^2R[F_3],$

where $R[F_1] = R[F_2] = R[F_3]$ and $c_{\star\star} > 1$.

TABLE 1:Estimated power of the tests for various dependence structures based on the MEAN and PHT, measures, for n = 200 and $\alpha = 0.05$.

Risk Mea-	Dependence	Alternate 1-constants (c*)									
sure											
		0.85	0.90	0.95	1.00	1.05	1.10	1.15	1.25	1.50	2.00
MEAN	Negative	1.00	1.00	0.65	0.05	0.47	0.94	0.98	1.00	1.00	1.00
	Independence	1.00	1.00	0.82	0.05	0.59	0.98	1.00	1.00	1.00	1.00
	Moderate-Positive	1.00	1.00	0.94	0.06	0.90	0.99	1.00	1.00	1.00	1.00
	Strong-Positive	1.00	1.00	0.98	0.06	0.99	1.00	1.00	1.00	1.00	1.00
РНТ	Negative	1.00	1.00	0.48	0.05	0.43	0.87	0.97	1.00	1.00	1.00
	Independence	1.00	1.00	0.55	0.05	0.51	0.93	0.99	1.00	1.00	1.00
	Moderate-Positive	1.00	1.00	0.83	0.05	0.74	0.97	1.00	1.00	1.00	1.00
	Strong-Positive	1.00	1.00	0.90	0.06	0.89	0.99	1.00	1.00	1.00	1.00

Ranadeera Samanthi (UW-Milwaukee) Comparing the Riskiness of Dependent Portfolios

Ranadeera Samanthi (UW-Milwaukee) Comparing the Riskiness of Dependent Portfolios

Power of the test when comparing MEAN with second type of alternatives

Conclusion

Conclusion

1. The presence of positive dependence among the portfolios makes the test more powerful for the risk measures under consideration.

Conclusion

Conclusion

- 1. The presence of positive dependence among the portfolios makes the test more powerful for the risk measures under consideration.
- 2. The presence of negative dependence among the portfolios makes the test less powerful for the risk measures under consideration.