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Motivation

• Data: The damage from 137 major tornadoes in the U.S. from
1890 to 1999: (see Brazauskas, Jones, Puri and Zitikis (2007) )
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Motivation

• Motivation: If the risks are independent Brazauskas, Jones,
Puri and Zitikis have introduced a hypothesis test to check if
at least one of those is different from the others or not.

Questions:

1. How does this test behave in the presence of dependence?

2. Does this test perform in the same manner in the presence of
different dependent structures?
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Preliminaries

• Dependent portfolios:

Negative Dependence:

Σ =

 1 −0.5 −0.5
−0.5 1 −0.5
−0.5 −0.5 1



Independence:

Σ =

 1 0 0
0 1 0
0 0 1



Moderate Positive Dependence:

Σ =

 1 0.5 0.5
0.5 1 0.5
0.5 0.5 1


Strong Positive Dependence:

Σ =

 1 1 1
1 1 1
1 1 1
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Preliminaries

• Spectral risk measure:

R[F ] =

∫ 1

0
F−1(u)J(u) du

where J is such that the integral is finite for the set of cdf’s F under

consideration (Jones & Zitikis, 2003). J is called a risk aversion function.

• Examples:

- mean:
J(u) = 1 for 0 ≤ u ≤ 1
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Preliminaries

- Proportional Hazards Transform (pht)

J(u) = r(1− u)r−1 for 0 ≤ u ≤ 1

where r (0 < r ≤ 1) is called the distortion level .

- Conditional Tail Expectation (cte)

J(u) =

{
0, for 0 ≤ u < t,

1/(1− t), for t ≤ u ≤ 1.

where t (0 ≤ t < 1) is called the threshold level . Alternative names

for the cte are: Tail Conditional Expectation; Conditional

Value-at-Risk ; Expected Shortfall .
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Preliminaries

• Nonparametric estimation of risk measures:

R̂[F ] = R[F̂ ] =

∫ 1

0
F̂−1(u)J(u) du

=

n∑
m=1

(∫ m/n

(m−1)/n
J(u) du

)
Xm:n

=

n∑
m=1

cnmXm:n

where F̂ is the empirical cdf based on the sample X1, . . . , Xn with

X1:n ≤ · · · ≤ Xn:n denoting its order statistics.

Note: R̂[F ] is an L-statistic (i.e., a linear combination of order

statistics).
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Preliminaries

• Hypothesis test:

Let R1 = R[F1], . . . , Rk = R[Fk] be risk measure values corresponding

to k populations with cdf’s F1, . . . , Fk which can be dependent or

independent. The hypothesis of interest:

H0 : R1 = · · · = Rk, Vs.

H1 : for at least one pair (i, j), Ri 6= Rj .

• The reformulation of the test using Gini index

H0 : γ = 0 Vs. H1 : γ > 0

where γ := k−2
∑

1≤i,j≤k |Ri −Rj | is the Gini index (Gini, 1914) of the

risk measure values R1, . . . , Rk.
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Nested L-Statistic

• The Gini index γ as a Nested-L statistic:

γ =
1

k2

∑
1≤i,j≤k

|Ri −Rj | =
1

k2

k∑
i=1

(4i− 2(k + 1))Ri:k

=

k∑
i=1

(∫ i/k

(i−1)/k
K(u)du

)
Ri:k =

k∑
i=1

c∗kiRi:k

where K(u) := 4u− 2 and R1:k ≤ · · · ≤ Rk:k are the k ordered risk

measure values.
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Nested L-Statistic

• A nonparametric estimator of γ:

γ̂ =
1

k2

∑
1≤i,j≤k

∣∣∣R̂i − R̂j

∣∣∣
=

1

k2

k∑
i=1

(4i− 2(k + 1)) R̂i:k

=

k∑
i=1

c∗kiR̂i:k

where R̂i =
∑n
m=1 cnmXm:n(i) and R̂1:k ≤ · · · ≤ R̂k:k denote the

k ordered estimators of the corresponding risk measure values.
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Asymptotic Results

• The test statistic:

T :=

√
n

k
γ̂

Then under H0,

T =
1

k2

k∑
i=1

(4i− 2(k + 1)) ∆i:k (1)

where ∆i =
√

n
k

(
R̂i −Ri

)
and ∆1:k ≤ · · · ≤ ∆k:k.
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Asymptotic Results

• Under H0 :
As n→∞, the asymptotic distribution of T is

1

k2

k∑
i=1

(4i− 2(k + 1))Gi:k

where, G1:k, . . . , Gk:k are k order statistics of normal random
variables with the same mean (= 0) but with different (and
“messy”) variances. Their dependence depend on that of
underlying risks.

• Under H1 :
As n→∞, the test statistic T →∞, implying that the
asymptotic power of the test is 1.
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Asymptotic Results

• Bootstrap:

- For every 1 ≤ i ≤ k, resample (with replacement)
X1(i), . . . , Xn(i) and obtain X∗

1 (i), . . . , X∗
n(i); then compute

γ̂∗ :=
1

k2

k∑
i=1

(4i− 2(k + 1))D∗
i:k

where D∗
1:k ≤ . . . ≤ D∗

k:k are the ordered values of

D∗
i := R̂∗

i − R̂i.

- Repeat the previous step B (say, B = 1000) number of times
and obtain γ̂∗1 , . . . , γ̂

∗
B ; then order them and obtain

γ̂∗1:B ≤ · · · ≤ γ̂∗B:B .
- Decision: Reject H0 at the α level, if γ̂ > γ̂∗[B(1−α)]:B
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Simulation study

Objectives:

- To estimate the power of the test against selected types of
alternatives for various dependence structures

• Portfolios of losses (F ’s):

F1: Exponential, F2: Pareto, F3: Lognormal.

• Dependence structures:

Negative, Independence, Moderate Positive, Strong Positive

• Risk measures (R’s):

mean, pht [r = 0.85], cte [t = 0.75]
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Simulation study

• Under H0 (equally risky portfolios)

R[F1] = R[F2] = R[F3]
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Simulation study

• Under H0 (equally risky portfolios)

R[F1] = R[F2] = R[F3]

• Under H1 (unequally risky portfolios)

For a fixed R, we consider two types of alternatives:

1- Two portfolios are equally risky but the third one differs:

R[F ?1 ] = c?R[F1], R[F ?2 ] = R[F2], R[F ?3 ] = R[F3],

where R[F1] = R[F2] = R[F3] and c? 6= 1.

2- Relative riskiness of all three portfolios is equally-spaced:

R[F ??1 ] = c??R[F1], R[F ??2 ] = R[F2], R[F ??3 ] = c2??R[F3],

where R[F1] = R[F2] = R[F3] and c?? > 1.
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Simulation study

Table 1:Estimated power of the tests for various dependence structures
based on the mean and pht, measures, for n = 200 and α = 0.05.

Risk Mea-

sure

Dependence Alternate 1-constants (c?)

0.85 0.90 0.95 1.00 1.05 1.10 1.15 1.25 1.50 2.00

MEAN Negative 1.00 1.00 0.65 0.05 0.47 0.94 0.98 1.00 1.00 1.00

Independence 1.00 1.00 0.82 0.05 0.59 0.98 1.00 1.00 1.00 1.00

Moderate-Positive 1.00 1.00 0.94 0.06 0.90 0.99 1.00 1.00 1.00 1.00

Strong-Positive 1.00 1.00 0.98 0.06 0.99 1.00 1.00 1.00 1.00 1.00

PHT Negative 1.00 1.00 0.48 0.05 0.43 0.87 0.97 1.00 1.00 1.00

Independence 1.00 1.00 0.55 0.05 0.51 0.93 0.99 1.00 1.00 1.00

Moderate-Positive 1.00 1.00 0.83 0.05 0.74 0.97 1.00 1.00 1.00 1.00

Strong-Positive 1.00 1.00 0.90 0.06 0.89 0.99 1.00 1.00 1.00 1.00
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Simulation study
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Conclusion

Conclusion

1. The presence of positive dependence among the portfolios
makes the test more powerful for the risk measures under
consideration.

2. The presence of negative dependence among the portfolios
makes the test less powerful for the risk measures under
consideration.

Ranadeera Samanthi ( UW-Milwaukee ) Comparing the Riskiness of Dependent Portfolios 20 / 20



Background Hypothesis Test and Simulation Study Conclusion

Conclusion

Conclusion

1. The presence of positive dependence among the portfolios
makes the test more powerful for the risk measures under
consideration.

2. The presence of negative dependence among the portfolios
makes the test less powerful for the risk measures under
consideration.

Ranadeera Samanthi ( UW-Milwaukee ) Comparing the Riskiness of Dependent Portfolios 20 / 20


	Background
	Motivation
	Preliminaries

	Hypothesis Test and Simulation Study
	Nested L-Statistic
	Asymptotic Results
	Simulation Study

	Conclusion

